Note on Linearly Compact Abelian Groups

Author:

Fuchs L.

Abstract

By a group A is meant throughout an additively written abelian group. A is said to have linear topology if there is a system of subgroups Ui (iI) of A such that, for aA, the cosets a+Ui(iI) form a fundamental system of neighborhoods of a. The group operations are continuous in any linear topology; the topologies are always assumed to be Hausdorff, that is, ∩iUi = 0. A linearly compact group is a group A with a linear topology such that if aj+Aj (jI) is a system of cosets modulo closed subgroups Aj with the finite intersection property (i.e. any finite number of aj+Aj have a non-void intersection), then the intersection ∩j(aj+Aj) of all of them is not empty.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference16 articles.

1. Algebraic structure of compact abelian groups;Hulanicki;Bull. Acad. Polon. Sci.,1958

2. Notes on abelian groups I;Fuchs;Annales Univ. Sci. Budapest,1959

3. On cardinal numbers related with a compact abelian group

4. P-pure exact sequences and the group of p-pure extensions;Yahya;Annales Univ. Sci.,1962

5. Abelian groups that are direct summands of every abelian group which contains them as pure subgroups

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Weakly Linearly Compact Topological Abelian Groups;Journal of Mathematical Sciences;2014-03

2. On some algebraic properties of locally compact and weakly linearly compact topological Abelian groups;Journal of Mathematical Sciences;2008-01

3. László Fuchs' 70th birthday;Periodica Mathematica Hungarica;1996-02

4. Topological groups;Journal of Soviet Mathematics;1985-03

5. Topologies Linéaires Minimales sur un Groupe Abélien;Lecture Notes in Mathematics;1983

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3