Abstract
It is well known that a real symmetric matrix can be diagonalised by an orthogonal transformation. This statement is not true, in general, for a symmetric matrix of complex elements. Such complex symmetric matrices arise naturally in the study of damped vibrations of linear systems. It is shown in this paper that a complex symmetric matrix can be diagonalised by a (complex) orthogonal transformation, when and only when each eigenspace of the matrix has an orthonormal basis; this implies that no eigenvectors of zero Euclidean length need be included in the basis. If the matrix cannot be diagonalised, then it has at least one invariant subspace which consists entirely of vectors of zero Euclidean length.
Publisher
Cambridge University Press (CUP)
Reference2 articles.
1. Über symmetrische, alternierende und orthogonale Normalformen von Matrizen;Wellstein;J. für reine und angew. Math.,1930
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献