CAYLEY SUM GRAPHS OF IDEALS OF A COMMUTATIVE RING

Author:

AFKHAMI M.,BARATI Z.,KHASHYARMANESH K.,PAKNEJAD N.

Abstract

AbstractLet $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}R$ be a commutative ring, $I(R)$ be the set of all ideals of $R$ and $S$ be a subset of $I^*(R)=I(R)\setminus \{0\}$. We define a Cayley sum digraph of ideals of $R$, denoted by $\overrightarrow{\mathrm{Cay}}^+ (I(R),S)$, as a directed graph whose vertex set is the set $I(R)$ and, for every two distinct vertices $I$ and $J$, there is an arc from $I$ to $J$, denoted by $I\longrightarrow J$, whenever $I+K=J$, for some ideal $K $ in $S$. Also, the Cayley sum graph $ \mathrm{Cay}^+ (I(R), S)$ is an undirected graph whose vertex set is the set $I(R)$ and two distinct vertices $I$ and $J$ are adjacent whenever $I+K=J$ or $J+K=I$, for some ideal $K $ in $ S$. In this paper, we study some basic properties of the graphs $\overrightarrow{\mathrm{Cay}}^+ (I(R),S)$ and $ \mathrm{Cay}^+ (I(R), S)$ such as connectivity, girth and clique number. Moreover, we investigate the planarity, outerplanarity and ring graph of $ \mathrm{Cay}^+ (I(R), S)$ and also we provide some characterization for rings $R$ whose Cayley sum graphs have genus one.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cayley subspace sum graph of vector spaces;International Electronic Journal of Algebra;2022-10-27

2. A Survey on Genus of Selected Graphs from Commutative Rings;Springer Proceedings in Mathematics & Statistics;2021

3. On projective intersection graph of ideals of commutative rings;Journal of Algebra and Its Applications;2019-12-23

4. Cayley sum graph of ideals of commutative rings;Journal of Algebra and Its Applications;2018-06-13

5. On the generalization of Cayley graphs of commutative rings;Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry;2016-09-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3