Abstract
AbstractLet x0, x1, x2, x3 be polynomials in a variable t and with coefficients in a field k of character of characteristic 0. If and , then x0 = x1 = x2 = x3 = 0. This partially answers a question of Pjatetskii-Š;apiro and Šafarevič about the K3-surface . The proof uses a technique of M. R. Christie.
Publisher
Cambridge University Press (CUP)
Reference4 articles.
1. Torelli's theorem for K3 algebraic surfaces;Pjatetskii-Sapiro;Izv. Akad. Nauk SSSR (ser. mat.),1971
2. Positive definite rational functions of two variables which are not the sum of three squares
3. indeterminate equation;Dem'janenko;Zap. Naucn, Sem. Leningrad. Otdel. Mat. Inst. Steklov,1977
4. Étude des points d'ordre fini des variétés abeliennes de dimension un définies sur un anneau principal;Hellegouarch;J. reine. angew. Math.,1970
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献