The numerical solution of integral equations using Chebyshev polynomials

Author:

Elliott David

Abstract

An investigation has been made into the numerical solution of non-singular linear integral equations by the direct expansion of the unknown function f(x) into a series of Chebyshev polynomials of the first kind. The use of polynomial expansions is not new, and was first described by Crout [1]. He writes f(x) as a Lagrangian-type polynomial over the range in x, and determines the unknown coefficients in this expansion by evaluating the functions and integral arising in the equation at chosen points xi. A similar method (known as collocation) is used here for cases where the kernel is not separable. From the properties of expansion of functions in Chebyshev series (see, for example, [2]), one expects greater accuracy in this case when compared with other polynomial expansions of the same order. This is well borne out in comparison with one of Crout's examples.

Publisher

Cambridge University Press (CUP)

Reference6 articles.

1. [6] Elliott D. , The Expansion of Functions in Ultraspherical Polynomials. This Journal (to be published).

2. An Application of Polynomial Approximation to the Solution of Integral Equations Arising in Physical Problems

3. Tables of Chebyshev Polynomials;National Bureau of Standards, Applied Mathematics Series,1952

4. The numerical solution of linear differential equations in Chebyshev series

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3