Abstract
In this paper our graphs will be finite, undirected, and without loops or multiple edges. We will denote the set of vertices of a graph G by V(G). If G is a graph and u, v∈V(G), then we will write u ∼ v to denote that u and v are adjacent and u ≁ v otherwise. If A ⊆ V(G), then we let N(A) = {u∈ V(G)|u ∼ a for each a ∈A}. However we write N(v) instead of N({v}). When there is no chance of confusion, we will not distinguish between a subset A ⊆ V(G) of vertices of G and the subgraph that it induces. We will denote the cardinality of a set A by |A|. The degree of a vertex v is δ(v) = |N(v)|. Any undefined terminology in this paper will generally conform with Behzad and Chartrand [1].
Publisher
Cambridge University Press (CUP)
Reference9 articles.
1. [9] Sumner D. P. , Indecomposable graphs, (Ph. D. Dissertation, University of Massachusetts, Amherst, Massachusetts (1971).)
2. Operational statistics, I: basic concepts;Randall;J. Mathematical Phys.,1972
3. An Approach to Empirical Logic
4. Some Theorems on Abstract Graphs
5. Point determination in graphs
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献