Author:
LU GUANGHUI,TAO SHUANGPING
Abstract
Let $({\mathcal{X}},d,\unicode[STIX]{x1D707})$ be a nonhomogeneous metric measure space satisfying the so-called upper doubling and the geometric doubling conditions. In this paper, the authors give the natural definition of the generalized Morrey spaces on $({\mathcal{X}},d,\unicode[STIX]{x1D707})$, and then investigate some properties of the maximal operator, the fractional integral operator and its commutator, and the Marcinkiewicz integral operator.
Publisher
Cambridge University Press (CUP)
Reference21 articles.
1. BOUNDEDNESS OF MULTILINEAR COMMUTATORS OF CALDERÓN-ZYGMUND OPERATORS ON ORLICZ SPACES OVER NON-HOMOGENEOUS SPACES
2. Weak and strong type estimates for fractional integral operators on Morrey spaces over metric measure spaces;Sihwaningrum;Eurasian Math. J.,2013
3. Marcinkiewicz Integrals with Non-Doubling Measures
4. Characterizations for the generalized fractional integral operators on Morrey spaces;Math. Inequal. Appl.,2014
5. Estimates for Parameter Littlewood-Paleygκ⁎Functions on Nonhomogeneous Metric Measure Spaces
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献