Author:
Balaban A. T.,Davies Roy O.,Harary Frank,Hill Anthony,Westwick Roy
Abstract
AbstractThe smallest (nontrivial) identity graph is known to have six points and the smallest identity tree seven. It is now shown that the smallest cubic identity graphs have 12 points and that exactly two of them are planar, namely those constructed by Frucht in his proof that every finite group is isomorphic to the automorphism group of some cubic graph. Both of these graphs can be obtained from plane trees by joining consecutive endpoints; it is shown that when applied to identity trees this construction leads to identity graphs except in certain specified cases. In appendices all connected cubic graphs with 10 points or fewer, and all cubic nonseparable planar graphs with 12 points, are displayed.
Publisher
Cambridge University Press (CUP)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献