Abstract
AbstractWe prove that all g-natural contact metric structures on a two-point homogeneous space are homogeneous contact. The converse is also proved for metrics of Kaluza–Klein type. We also show that if (M,g) is an Einstein manifold and $\tilde G$ is a Riemannian g-natural metric on T1M of Kaluza–Klein type, then $(T_1 M,\tilde \eta ,\tilde G)$ is H-contact if and only if (M,g) is 2-stein, so proving that the main result of Chun et al. [‘H-contact unit tangent sphere bundles of Einstein manifolds’, Q. J. Math., to appear. DOI: 10.1093/qmath/hap025] is invariant under a two-parameter deformation of the standard contact metric structure on T1M. Moreover, we completely characterize Riemannian manifolds admitting two distinct H-contact g-natural contact metric structures, with associated metric of Kaluza–Klein type.
Publisher
Cambridge University Press (CUP)
Reference26 articles.
1. [11] Boeckx E. and Vanhecke L. , ‘Geometry of the unit tangent sphere bundle’ Public. Dep.to de Geometria y Topologia, Univ. Santiago de Compostela (Spain), 89 (1998), 5–17.
2. H-CONTACT UNIT TANGENT SPHERE BUNDLES OF EINSTEIN MANIFOLDS
3. Riemannian Geometry of Contact and Symplectic Manifolds
4. An existence theorem for harmonic sections
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献