Author:
GRAHL JÜRGEN,MANKET TOMER,NEVO SHAHAR
Abstract
We show that the family of all holomorphic functions $f$ in a domain $D$ satisfying $$\begin{eqnarray}\frac{|f^{(k)}|}{1+|f|}(z)\leq C\quad \text{for all }z\in D\end{eqnarray}$$ (where $k$ is a natural number and $C>0$) is quasi-normal. Furthermore, we give a general counterexample to show that for $\unicode[STIX]{x1D6FC}>1$ and $k\geq 2$ the condition $$\begin{eqnarray}\frac{|f^{(k)}|}{1+|f|^{\unicode[STIX]{x1D6FC}}}(z)\leq C\quad \text{for all }z\in D\end{eqnarray}$$ does not imply quasi-normality.
Publisher
Cambridge University Press (CUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献