Abstract
A universal power automorphism (Cooper [1]) of a group is an automorphism mapping every element x to a power xn for some fixed integer n. It is long known that a group admitting such an automorphism with n= −1, 2 or 3 must be Abelian. Miller [5] showed that for every other non-zero integral value of n there exist non-Abelian groups admitting a non-trivial universal power automorphism x→xn.
Publisher
Cambridge University Press (CUP)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献