Abstract
Hardy’s uncertainty principle for the Gabor transform is proved for locally compact abelian groups having noncompact identity component and groups of the form$\mathbb{R}^{n}\times K$, where$K$is a compact group having irreducible representations of bounded dimension. We also show that Hardy’s theorem fails for a connected nilpotent Lie group$G$which admits a square integrable irreducible representation. Further, a similar conclusion is made for groups of the form$G\times D$, where$D$is a discrete group.
Publisher
Cambridge University Press (CUP)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献