Abstract
AbstractWe introduce perfect effect algebras and we show that every perfect algebra is an interval in the lexicographical product of the group of all integers with an Abelian directed interpolation po-group. To show this we introduce prime ideals of effect algebras with the Riesz decomposition property (RDP). We show that the category of perfect effect algebras is categorically equivalent to the category of Abelian directed interpolation po-groups. Moreover, we prove that any perfect effect algebra is a subdirect product of antilattice effect algebras with the RDP.
Publisher
Cambridge University Press (CUP)
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献