Certain homomorphisms of a compact semigroup onto a thread

Author:

Hunter R. P.,Anderson L. W.

Abstract

Let S be a compact semigroup and f a continuous homomorphism of S onto the (compact) semigroup T. What can be said concerning the relations among S, f, and T? It is to one special aspect of this problem which we shall address ourselves. In particular, our primary considerations will be directed toward the case in which T is a standard thread. A standard thread is a compact semigroup which is topologically an arc, one endpoint being an identity element, the other being a zero element. The structure of standard threads is rather completely determined e.g. see [20]. Among the standard threads there are three which have a rather special rôle. These are as follows: A unit thread is a standard thread with only two idempotents and no nilpotent element. A unit thread is isomorphic to the usual unit interval [14]. A nil thread again has only two idempotents but has a non-zero nilpotent element. A nil thread is isomorphic with the interval [½, 1], the multiplication being the maximum of ½ and the usual product — or, what is the same thing, the Rees quotient of the usual [0, 1] by the ideal [0,½ ]. Finally there is the idempotent thread, the multiplication being x o y = mm (x, y). These three standard threads can often be considered separately and, in this paper, we reserve the symbols I1I2 and I3 to denote the unit, nil and idempotent threads respectively. Also, throughout this paper, by a homomorphism we mean a continuous homomorphism.

Publisher

Cambridge University Press (CUP)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3