Abstract
AbstractWe prove the following statements about bounded linear operators on a complex separable infinite dimensional Hilbert space. (1) Let A and B* be subnormal operators. If A2X = XB2 and A3X = XB3 for some operator X, then AX = XB. (2) Let A and B* be subnormal operators. If A2X – XB2 ∈ Cp and A3X – XB3 ∈ Cp for some operator X, then AX − XB ∈ C8p. (3) Let T be an operator such that 1 − T*T ∈ Cp for some p ≥1. If T2X − XT2 ∈ Cp and T3X – XT3 ∈ Cp for some operator X, then TX − XT ∈ Cp. (4) Let T be a semi-Fredholm operator with ind T < 0. If T2X − XT2 ∈ C2 and T3X − XT3 ∈ C2 for some operator X, then TX − XT ∈ C2.
Publisher
Cambridge University Press (CUP)
Subject
General Mathematics,Statistics and Probability
Reference5 articles.
1. nth roots of operators;Embry;Proc. Amer. Math. Soc.,1968
2. On the essential numerical range, the essential spectrum, and a problem of Halmos;Fillmore;Acta Sci. Math.,1972
3. Some Recent Developments in Operator Theory
4. The commutants of relatively prime powers in Banach algebras
5. The Fuglede commutativity theorem modulo operator ideals
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献