Abstract
Let S be a nonempty subset of a normed linear space E. A point s0 of S is called a farthest point if for some x ∈ E, . The set of all farthest points of S will be denoted far (S). If S is compact, the continuity of distance from a point x of E implies that far (S) is nonempty.
Publisher
Cambridge University Press (CUP)
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. The NSLUC property and Klee envelope;Mathematische Annalen;2015-08-29
2. Some remarks on farthest points;Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas;2011-02-01
3. Farthest points and monotone operators;Bulletin of the Australian Mathematical Society;1998-08
4. Farthest points in W*-compact sets;Bulletin of the Australian Mathematical Society;1988-12
5. On strongly exposing functionals;Journal of the Australian Mathematical Society;1976-05