Abstract
AbstractLet$\mathcal {O}$be a higher rank Exel–Laca algebra generated by an alphabet$\mathcal {A}$. If$\mathcal {A}$containsdcommuting isometries corresponding to rankdand the transition matrices do not have finite rows, then$K_1(\mathcal {O})$is trivial and$K_0(\mathcal {O})$is isomorphic toK0of the abelian subalgebra of$\mathcal {O}$generated by the source projections of$\mathcal {A}$.
Publisher
Cambridge University Press (CUP)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献