Abstract
Let G denote a finite group with a fixed-point-free automorphism of prime order p. Then it is known (see [3] and [8]) that G is nilpotent of class bounded by an integer k(p). From this it follows that the length of the derived series of G is also bounded. Let l(p) denote the least upper bound of the length of the derived series of a group with a fixed-point-free automorphism of order p. The results to be proved here may now be stated: Theorem 1. Let G denote a soluble group of finite order and A an abelian group of automorphisms of G. Suppose that (a) ∣G∣ is relatively prime to ∣A∣; (b) GAis nilpotent and normal inGω, for all ω ∈ A#; (c) the Sylow 2-subgroup of G is abelian; and (d) if q is a prime number andqk+ 1 divides the exponent of A for some integer k then the Sylow q-subgroup of G is abelian.
Publisher
Cambridge University Press (CUP)
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献