Abstract
Let $I(n)$ denote the number of isomorphism classes of subgroups of $(\mathbb{Z}/n\mathbb{Z})^{\times }$, and let $G(n)$ denote the number of subgroups of $(\mathbb{Z}/n\mathbb{Z})^{\times }$ counted as sets (not up to isomorphism). We prove that both $\log G(n)$ and $\log I(n)$ satisfy Erdős–Kac laws, in that suitable normalizations of them are normally distributed in the limit. Of note is that $\log G(n)$ is not an additive function but is closely related to the sum of squares of additive functions. We also establish the orders of magnitude of the maximal orders of $\log G(n)$ and $\log I(n)$.
Publisher
Cambridge University Press (CUP)
Reference14 articles.
1. On the distribution of amicable numbers;Pomerance;J. reine angew. Math.,1977
2. The Gaussian Law of Errors in the Theory of Additive Number Theoretic Functions
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献