A Hybrid Method for Analyzing the Dynamic Responses of Cavities or Shells Buried in an Elastic Half-Plane

Author:

Yeh Chau-Shioung,Teng Tsung-Jen,Shyu Wen-Shinn,Tsai I-Chang

Abstract

AbstractIn this paper, based on a variational formalism which originally proposed by Mei [1] for infinite elastic medium and extended by Yeh, et al. [2,3] for elastic half-plane, a hybrid method which combines the finite element and series expansion method is implemented to solve the diffraction of plane waves by a cavity buried in an elastic half-plane. The finite domain which encloses all inhomogeneities including the cavity can be easily formulated by finite element methods. The unknown boundary data obtained by subtracting the known free fields from the total fields which include the boundary nodal displacements and tractions at the interface between the finite domain and the surrounding elastic half-plane are not independent of each other and can be correlated through a series representation. Due to the continuity condition at the interface, the same series representation is still valid for the exterior elastic half-plane to represents the scattered wave. The unknown coefficients of this series are treated as generalized coordinates and can be easily formulated by the same variational principle. The expansion function of the series is composed of basis function. Each basis function is constructed from the basis function for an infinite plane by superimposing an additional homogeneous reflective term to satisfy both traction free conditions at ground surface and radiation conditions at infinity. The numerical results are made against those obtained by boundary element methods, and good agreements are found.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Condensed Matter Physics

Reference17 articles.

1. Seismic response of a cylindrical shell embedded in a layered viscoelastic half-space. I: Formulation

2. A Hybrid Method for Wave Diffraction by a Semi-Cylindrical Alluvial Valley;Yeh;The First International Conference on Structural Stability and Dynamics,2000

3. Response of a circular cylindrical shell to disturbances in a half-space

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3