All Speed and High-Resolution Scheme Applied to Three-Dimensional Multi-Block Complex Flowfield System

Author:

Hsu Uzu- Kuei,Tai Chang- Hsien,Tsai Chien- Hsiung

Abstract

ABSTRACTThe improved numerical approach is implemented with preconditioned Navier-Stokes solver on arbitrary three-dimensional (3-D) structured multi-block complex flowfield. With the successful application of time-derivative preconditioning, present hybrid finite volume solver is performed to obtain the steady state solutions in compressible and incompressible flows. This solver which combined the adjective upwind splitting method (AUSM) family of low-diffusion flux-splitting scheme with an optimally smoothing multistage scheme and the time-derivative preconditioning is used to solve both the compressible and incompressible Euler and Navier-Stokes equations. In addition, a smoothing procedure is used to provide a mechanism for controlling the numerical implementation to avoid the instability at stagnation and sonic region. The effects of preconditioning on accuracy and convergence to the steady state of the numerical solutions are presented. There are two validation cases and three complex cases simulated as shown in this study. The numerical results obtained for inviscid and viscous two-dimensional flows over a NACA0012 airfoil at free stream Mach number ranging from 0.1 to 1.0E-7 indicates that efficient computations of flows with very low Mach numbers are now possible, without losing accuracy. And it is effectively to simulate 3-D complex flow phenomenon from compressible flow to incompressible by using the advanced numerical methods.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3