Effects of Structural Behavior on Electromagnetic Resonance Frequency of a Superconducting Radio Frequency Cavity

Author:

Lin M.-C.,Wang Ch.,Chang L.-H.,Yeh M.-K.,Kao F.-S.

Abstract

AbstractDuring operation, a superconducting radio frequency cavity is cooled down to below critical superconducting temperature by liquid helium. Thus it is under external pressure by liquid helium while an ultrahigh vacuum inside. Being a niobium-made shell structure, the SRF cavity's shape and consequently the electromagnetic resonance frequency are sensitive to external load variations. A CESR-III 500MHz superconducting radio frequency cavity is illustrated to investigate this relationship. A simulation that links the calculations on mechanical structure and radio frequency electromagnetic field with the finite element code ANSYS® is demonstrated herein. The changes of electromagnetic resonance frequency associated with external loads and mechanical properties of niobium are studied systematically. A complete understanding on the mechanism is thus achieved. The computed results also indicate that the electromagnetic resonance frequency increases as the cavity is either cooled to cryogenic temperature or stretched longitudinally, while the reduction of the helium vessel pressure also raises the resonance frequency. Besides, the electromagnetic resonance frequency shift is ruled by the coefficient of thermal expansion when the cavity is cooled from room temperature to liquid helium temperature. Young's modulus and thickness of the cavity wall dominate the structure stiffness and thus also affect the frequency shift.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Condensed Matter Physics

Reference23 articles.

1. 22. Flynn T. , Cryogenic Engineering, Marcel Dekker, (1997).

2. Design Challenges for High Current Storage Rings;Padamsee;Part. Accel.,1992

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3