Behaviors of Drained Lateral Extension for Saturated Sand and Their Applications

Author:

Yang C.-P.

Abstract

AbstractPractically all retaining walls may rotate, yet movements of the wall could be restricted, particularly under working conditions. Since the earth pressure on the retaining wall often deviates from the fully active state, there is a need for predicting the earth pressure at any wall movement. The shearing behavior of backfill behind the wall plays an essential role for predicting the redistributions of earth pressure for different wall movements. This paper studies 25 sets of test for analyzing the drained lateral extension behaviors of saturated Ottawa sand. Three methods are used to interpret the active state of specimens and it is found that the monotonic increasing property of the σ'cs– εrpplot obtained by using the (q')maxmethod is more obvious than those obtained by the other two methods. Where σ'csis an initial confining stress of specimen for lateral extension test, and εrpis a radial strain of specimen developed at the active state. The specimens, with the relative density between 15% ∼ 90% and with the confining stress between 80kPa ∼ 280kPa, range their values of εrpfrom −1.18% to −2.99%. The magnitude of εrpcan be used to judge the secure level of deformation for a retaining structure. Subsequently, this study derives a formula to predict the redistribution of earth pressure on a retaining wall when the wall moving outwards based on the results of those lateral extension tests. This prediction method is a new approach to study the problems of earth pressure. Comparisons of predicted results from numerical solutions technique and observations from model tests show that the performance of this method is reasonable.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Condensed Matter Physics

Reference38 articles.

1. Lateral earth pressures behind rotating walls

2. Inversion of Residual Stress;Kuo;Chinese Journal of Mechanics, Series A,2001

3. Micro-System Displacement and Profile Measurement by an Integrated Photon Tunneling and Confocal Microscope;Chen;Chinese Journal of Mechanics, Series A,2002

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3