Author:
Wang L.,Ni Q.,Huang Y. Y.
Abstract
AbstractThe stability and possible chaotic vibrations of a fluid-conveying pipe with additional combined constraints are investigated. The pipe, restrained by motion constraints somewhere along the length of the pipe, is modeled by a beam clamped at the left end and supported by a special device (a rotational elastic constraint plus a Q-apparatus) at the right end. The motion constraints are modeled by both cubic and trilinear models. Based on the Differential Quadrature Method (DQM), the nonlinear dynamical equations of motion for the system are formulated, and then solved via a numerical iterative technique. Calculations of bifurcation diagrams, phase portraits, time responses and Poincare maps of the oscillations establish the existence of chaotic vibrations. The route to chaos is shown to be via period-doubling bifurcations. It is found that the effect of spring constant of the rotational elastic constraint on the dynamics is significant. Moreover, the critical fluid velocity at the Hopf bifurcation point for the cubic model is higher than that for the trilinear model.
Publisher
Oxford University Press (OUP)
Subject
Applied Mathematics,Mechanical Engineering,Condensed Matter Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. References;Handbook of Structural Life Assessment;2017-04-07
2. Bibliography;Fluid-Structure Interactions;2014
3. Overview of Mechanics of Pipes Conveying Fluids—Part I: Fundamental Studies;Journal of Pressure Vessel Technology;2010-05-18