Author:
Tai Chang-Hsien,Wang Ding-San,Chen Ping-Hei,Hsu Uzu-Kuei,Miao Jr-Ming
Abstract
ABSTRACTA three-dimensional Navior-Stokes analyzer based on control volume method is developed to simulate the complex flow field within a turbomachinery. With VKI-CT2 turbine blade as the test model, numerical results are compared with experimented data and shows the existence of separation-transition bubble and the interaction of shock with turbulent boundary layer flow. The governing Navier-Stokes equations are solved by an improved numerical method that uses an upwind flux-difference split scheme for spatial descretization and an explicit optimally smoothing multi-stage scheme for time integration. Turbulent stresses are approximated by modifying Baldwin-Lomax algebraic, k-ε, R-k-ε and RNG k-ε turbulence models. According to the results of this research, this analyzer can indeed effectively modulate and simulate the aerodynamic characteristic of the transonic turbine rotor near the endwall.
Publisher
Oxford University Press (OUP)
Subject
Applied Mathematics,Mechanical Engineering,Condensed Matter Physics