Abstract
AbstractThis research is focused on exploring the fluid loading effects on the dispersion curves of Lamb modes propagating in a piezoelectric plate. A theoretical treatment based on a partial wave analysis is developed to model the dispersion curves of Lamb modes propagating in an X-LiNbO3 plate loaded by a fluid with combined mechanical/dielectric properties. In particular, the mode-shifting characteristics caused by the fluid loading as a function of the propagation orientation are illustrated with numerical examples. Finally, for the case of water as an immersing fluid, individual attributions of the mechanical and dielectric loading effects causing the mode-shifting are analyzed. It is found that the dielectric loading effect dominates the mode-shifting while the mechanical density loading can be neglected while Lamb waves propagate in an X-LiNbO3 plate immersing in water. The current results provides useful information for the applications of acoustic plate mode (APM) devices used in liquid sensor applications.
Publisher
Oxford University Press (OUP)
Subject
Applied Mathematics,Mechanical Engineering,Condensed Matter Physics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献