Response of a Maglev Vehicle Moving on a Two-Span Flexible Guideway

Author:

Yau J. D.

Abstract

AbstractThis paper is intended to present a preliminary framework for dynamic interaction analysis of a maglev (magnetically levitated) vehicle running on a two-span guideway using a comprehensive iterative approach. A maglev vehicle with electrodynamic suspension (EDS) system is simplified as a two degrees-of-freedom (2-DOF) maglev oscillator tuned by a PID (Proportional-Integral-Derivative) controller. The guideway is modeled as a two-span continuous beam with uniform section. Two sets of equations of motion are written, with the first set for the guideway and the second set for the maglev oscillator traveling on the guideway through a motion-dependent magnetic force. To achieve the stable levitation gap for a maglev vehicle moving on a flexible guideway, Ziegler-Nicholas (Z-N) tuning rules are used to determine the tuning parameters of the PID controller. Numerical simulations demonstrate that the levitation gap affects the dynamic response of the maglev vehicle while little influence on the guideway response since the inertial force of the moving maglev vehicle is much lower than its static load.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3