Influences of Microscopic Factors on Macroscopic Strength and Stiffness of Inter-Layered Rocks — Revealed by a Bonded Particle Model

Author:

Jeng F.-S.,Wang T.-T.,Li H. H.,Huang T.-H.

Abstract

AbstractSince a conventional petrographic analysis does not allow a systematic and detailed study on how the microscopic factors affect the macroscopic behavior of inter-layered rocks, this research adopted a numerical model, the bonded particle model, to explore the micro-mechanisms associated with the strength and stiffness of inter-layered rocks. The model was first calibrated by comparing the simulations to the actual behavior until they tally with each other. Following, the microscopic factors, including the bond strength, the bond stiffness, type of bonds and friction of particles and type of bond stiffness, are varied to study their influences. As expected, the bond strength and the bond stiffness are found to have a direct and significant influence on the macroscopic uniaxial compressive strength and stiffness, respectively. Furthermore, close observations on the breaking of bonds during the loading process reveal interesting phenomena, including the transition of shear/normal bond breaking, the type of internal fracture and the factors controlling internal failure, etc. These phenomena enlighten the interpretations about the micromechanisms accounting for the macroscopic strength and stiffness of inter-layered rocks.

Publisher

Oxford University Press (OUP)

Subject

Applied Mathematics,Mechanical Engineering,Condensed Matter Physics

Reference25 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3