D-SPECTRUM AND RELIABILITY OF A BINARY SYSTEM WITH TERNARY COMPONENTS

Author:

Gertsbakh Ilya B.,Shpungin Yoseph,Vaisman Radislav

Abstract

We consider a monotone binary system with ternary components. “Ternary” means that each component can be in one of three states: up, middle (mid) and down. Handling such systems is a hard task, even if a part of the components have no mid state. Nevertheless, the permutation Monte Carlo methods, that proved very useful for dealing with binary components, can be efficiently used also for ternary monotone systems. It turns out that for “ternary” system there also exists a combinatorial invariant by means of which it becomes possible to count the number C(r;x) of system failure sets which have a given number r and x of components in up and down states, respectively. This invariant is called ternary D-spectrum and it is an analogue of the D-spectrum (or signature) of a system with binary components. Its value is the knowledge of system failure or path set properties which do not depend on stochastic mechanism governing component failures. In case of independent and identical components, knowing D-spectrum makes it easy to calculate system UP or DOWN probability for a variety of UP/DOWN definitions suitable for systems of many types, like communication networks, flow and supply networks, etc.

Publisher

Cambridge University Press (CUP)

Subject

Industrial and Manufacturing Engineering,Management Science and Operations Research,Statistics, Probability and Uncertainty,Statistics and Probability

Reference11 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the reliability estimation of stochastic binary systems;International Transactions in Operational Research;2021-07-28

2. Equivalency in joint signatures for binary/multi-state systems of different sizes;Probability in the Engineering and Informational Sciences;2021-07-14

3. SIGNATURES OF MULTI-STATE SYSTEMS BASED ON A SERIES/PARALLEL/RECURRENT STRUCTURE OF MODULES;Probability in the Engineering and Informational Sciences;2021-04-30

4. Power System Security With Cyber-Physical Power System Operation;IEEE Access;2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3