Abstract
We consider a two-player game in which the first player (the Guesser) tries to guess, edge-by-edge, the path that second player (the Chooser) takes through a directed graph. At each step, the Guesser makes a wager as to the correctness of her guess and receives a payoff proportional to her wager if she is correct. We derive optimal strategies for both players for various classes of graphs, and we describe the Markov-chain dynamics of the game under optimal play. These results are applied to the infinite-duration Lying Oracle Game, in which the Guesser must use information provided by an unreliable Oracle to predict the outcome of a coin toss.
Publisher
Cambridge University Press (CUP)
Subject
Industrial and Manufacturing Engineering,Management Science and Operations Research,Statistics, Probability and Uncertainty,Statistics and Probability
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献