AN MDP DECOMPOSITION APPROACH FOR TRAFFIC CONTROL AT ISOLATED SIGNALIZED INTERSECTIONS

Author:

Haijema René,van der Wal Jan

Abstract

This article presents a novel approach for the dynamic control of a signalized intersection. At the intersection, there is a number of arrival flows of cars, each having a single queue (lane). The set of all flows is partitioned into disjoint combinations of nonconflicting flows that will receive green together. The dynamic control of the traffic lights is based on the numbers of cars waiting in the queues. The problem concerning when to switch (and which combination to serve next) is modeled as a Markovian decision process in discrete time. For large intersections (i.e., intersections with a large number of flows), the number of states becomes tremendously large, prohibiting straightforward optimization using value iteration or policy iteration. Starting from an optimal (or nearly optimal) fixed-cycle strategy, a one-step policy improvement is proposed that is easy to compute and is shown to give a close to optimal strategy for the dynamic problem.

Publisher

Cambridge University Press (CUP)

Subject

Industrial and Manufacturing Engineering,Management Science and Operations Research,Statistics, Probability and Uncertainty,Statistics and Probability

Reference22 articles.

1. Decomposition for dynamic programming in production and inventory control

2. On the Traffic-light Queue

3. Traffic queue length measurement using an image processing sensor;Higashikubo;Sumitomo Electric Technical Review,1997

4. 6. Krishnan K.R. & Ott T.J . (1987). Joining the right queue: A Markov decision rule. In Proceedings of the 26th IEEE conference on decision and control, Los Angeles. New York: IEEE, pp. 1863–1868.

5. Approximation Methods for Queues with Application to the Fixed-Cycle Traffic Light

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3