Author:
Shanthikumar J. George,Yao David D.
Abstract
A stochastic process {Xt(s)} is viewed as a collection of random variables parameterized by time (t) and the initial state (s). {Xt(s)} is termed spatiotemporally increasing and convex if, in a sample-path sense, it is increasing in s and t and satisfies a directional convexity property, which implies that it is increasing and convex in s and in t (individually) and is supermodular in (s, t). Simple sufficient conditions are established for a uniforniizable Markov process to be spatiotemporally increasing and convex. The results are applied to study the convex orderings in GI/M(n)/l and M(n)/G/1 queues and to solve the optimal allocation of a joint setup among several production facilities. For a counting process that possesses a stochastic intensity, we show that its spatiotemporal behavior can be characterized by its conditional intensity via a birth process.
Publisher
Cambridge University Press (CUP)
Subject
Industrial and Manufacturing Engineering,Management Science and Operations Research,Statistics, Probability and Uncertainty,Statistics and Probability
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献