ON THE COMBINATORICS OF BINARY SERIES-PARALLEL GRAPHS
-
Published:2016-03-09
Issue:2
Volume:30
Page:244-260
-
ISSN:0269-9648
-
Container-title:Probability in the Engineering and Informational Sciences
-
language:en
-
Short-container-title:Prob. Eng. Inf. Sci.
Author:
Hofri Micha,Li Chao,Mahmoud Hosam
Abstract
Binary series-parallel (BSP) graphs have applications in transportation modeling, and exhibit interesting combinatorial properties. This work is limited to the second aspect. The BSP graphs of a given size – measured in edges – are enumerated. Under a uniform probability model, we investigate the asymptotic distribution of the order (number of vertices) and the asymptotic average length of a random walk (under different strategies) of large graphs of the same size. The systematic method throughout is to define the graphs, and the features we evaluate by a structural equation (equivalent to a regular expression). The structural equation is translated into an equation for a generating function, which is then analyzed.
Publisher
Cambridge University Press (CUP)
Subject
Industrial and Manufacturing Engineering,Management Science and Operations Research,Statistics, Probability and Uncertainty,Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A SPECTRUM OF SERIES–PARALLEL GRAPHS WITH MULTIPLE EDGE EVOLUTION;Probability in the Engineering and Informational Sciences;2019-01-26