Abstract
Semi-Markov decision processes underlie the control of many queueing systems. In this paper, we deal with infinite state semi-Markov decision processes with nonnegative, unbounded costs and finite action sets. Axioms for the existence of an expected average cost optimal stationary policy are presented. These conditions generalize the work in Sennott [22] for Markov decision processes. Verifiable conditions for the axioms to hold are obtained. The theory is applied to control of the M/G/l queue with variable service parameter, with on-off server, and with batch processing, and to control of the G/M/m queue with variable arrival parameter and customer rejection. It is applied to a timesharing network of queues with a single server and finally to optimal routing of Poisson arrivals to parallel exponential servers. The final section extends the existence result to compact action spaces.
Publisher
Cambridge University Press (CUP)
Subject
Industrial and Manufacturing Engineering,Management Science and Operations Research,Statistics, Probability and Uncertainty,Statistics and Probability
Cited by
46 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献