Methods for Summarizing Radiocarbon Datasets

Author:

Ramsey Christopher Bronk

Abstract

AbstractBayesian models have proved very powerful in analyzing large datasets of radiocarbon (14C) measurements from specific sites and in regional cultural or political models. These models require the prior for the underlying processes that are being described to be defined, including the distribution of underlying events. Chronological information is also incorporated into Bayesian models used in DNA research, with the use of Skyline plots to show demographic trends. Despite these advances, there remain difficulties in assessing whether data conform to the assumed underlying models, and in dealing with the type of artifacts seen in Sum plots. In addition, existing methods are not applicable for situations where it is not possible to quantify the underlying process, or where sample selection is thought to have filtered the data in a way that masks the original event distribution. In this paper three different approaches are compared: “Sum” distributions, postulated undated events, and kernel density approaches. Their implementation in the OxCal program is described and their suitability for visualizing the results from chronological and geographic analyses considered for cases with and without useful prior information. The conclusion is that kernel density analysis is a powerful method that could be much more widely applied in a wide range of dating applications.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Archaeology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3