Determinants for university students’ location data sharing with public institutions during COVID-19: The Italian case

Author:

Urbano Valeria M.ORCID,Bartolomucci FedericoORCID,Azzone Giovanni

Abstract

Abstract Data on real-time individuals’ location may provide significant opportunities for managing emergency situations. For example, in the case of outbreaks, besides informing on the proximity of people, hence supporting contact tracing activities, location data can be used to understand spatial heterogeneity in virus transmission. However, individuals’ low consent to share their data, proved by the low penetration rate of contact tracing apps in several countries during the coronavirus disease-2019 (COVID-19) pandemic, re-opened the scientific and practitioners’ discussion on factors and conditions triggering citizens to share their positioning data. Following the Antecedents → Privacy Concerns → Outcomes (APCO) model, and based on Privacy Calculus and Reasoned Action Theories, the study investigates factors that cause university students to share their location data with public institutions during outbreaks. To this end, an explanatory survey was conducted in Italy during the second wave of COVID-19, collecting 245 questionnaire responses. Structural equations modeling was used to contemporary investigate the role of trust, perceived benefit, and perceived risk as determinants of the intention to share location data during outbreaks. Results show that respondents’ trust in public institutions, the perceived benefits, and the perceived risk are significant predictor of the intention to disclose personal tracking data with public institutions. Results indicate that the latter two factors impact university students’ willingness to share data more than trust, prompting public institutions to rethink how they launch and manage the adoption process for these technological applications.

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3