Risk theory and Wiener processes

Author:

Bohman H.

Abstract

We will in this paper consider the risk process from the point of view of random walk in one dimension. The particle starts out at the origin. Each claim is equivalent to a step in the random walk. The length of the step is equal to the amount of the claim minus the amount of the premium which has been obtained since the preceding claim. If the difference is positive the particle advances to the right and if the difference is negative to the left. At distance U to the right from the origin there is a barrier. The problem is to find the distribution function of X, the time it takes the particle to cross the barrier for the first time.In most practical applications of risk theory U is large in comparison to the individual steps of the particle. We will in this paper assume that U is large in comparison to the individual steps and draw certain conclusions about the risk processes from this assumption.The individual steps of the particle have a certain distribution. The corresponding characteristic function is ϕ. For reasons which will be seen later we will consider ϕ to be a function of it = θ instead of t. This means thatThe mean value and the standard deviation of each step is equal to m and σ respectively. We now writeWe now define two random variables X and Y.X = time to cross the barrier for the first timeY = X σ2/U2.

Publisher

Cambridge University Press (CUP)

Subject

Economics and Econometrics,Finance,Accounting

Reference2 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3