PARSIMONIOUS PARAMETERIZATION OF AGE-PERIOD-COHORT MODELS BY BAYESIAN SHRINKAGE

Author:

Venter Gary,Şahın Şule

Abstract

AbstractAge-period-cohort models used in life and general insurance can be over-parameterized, and actuaries have used several methods to avoid this, such as cubic splines. Regularization is a statistical approach for avoiding over-parameterization, and it can reduce estimation and predictive variances compared to MLE. In Markov Chain Monte Carlo (MCMC) estimation, regularization is accomplished by the use of mean-zero priors, and the degree of parsimony can be optimized by numerically efficient out-of-sample cross-validation. This provides a consistent framework for comparing a variety of regularized MCMC models, such as those built with cubic splines, linear splines (as ours is), and the limiting case of non-regularized estimation. We apply this to the multiple-trend model of Hunt and Blake (2014).

Publisher

Cambridge University Press (CUP)

Subject

Economics and Econometrics,Finance,Accounting

Reference34 articles.

1. Wolfram (2016) Gamma function. http://mathworld.wolfram.com/GammaFunction.html.

2. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC

3. Hamiltonian Monte Carlo methods for efficient parameter estimation in steady state dynamical systems;Hoffman;Journal of Machine Learning Research,2014

4. A Technique for Analyzing Some Factors Affecting the Incidence of Syphilis

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3