Characterization of multiple disease resistance in melons (Cucumis melo L.) against Meloidogyne incognita, Fusarium oxysporum and tomato leaf curl Palampur virus

Author:

Dhami Dalvir Singh,Kaur SukhjeetORCID,Sharma Abhishek,Sharma Sat Pal,Dhillon Narpinderjeet Kaur,Jain Sandeep

Abstract

AbstractMelon is one of the important cucurbitaceous crops being cultivated widely in India and known for its delicious fruits. Crop is threatened by different biotic stresses including nematodes, fungi and viruses. The use of host resistance is the most economical, eco-compatible and long-lasting strategy to combat plant diseases. Keeping in mind this objective, 64 melon genotypes were screened against the prevalent Meloidogyne incognita, Fusarium oxysporum and tomato leaf curl Palampur virus (ToLCPalV) individually as well as with combined inoculations under artificial conditions. Out of 64 genotypes, three genotypes, MCPS, SM2012-1 and WM11 were found moderately resistant to M. incognita, nine genotypes (MM-KP15103, MM327, MM121103, KP4HM15, MM Sel.-103, SM2013-2, SM2012-1, SM2013-9 and WM11) recorded a resistant reaction against Fusarium wilt while four genotypes, WM11, SM2012-1, SM2013-9 and SM2013-2 exhibited a highly resistant reaction against ToLCPalV. A dendrogram constructed based on the resistance response of all the genotypes divided the genotypes into two groups and all resistant genotypes (MM1804, MM120103, SM2012-1, MM121103, SM2013-2, SM2013-9, WM11 and MM Sel.103) clustered in group II. The resistant genotypes when subjected to simultaneous inoculations of all three pathogens showed an increase in disease severity for each pathogen which negatively altered the resistance response of different genotypes. However, the genotypes SM2012-1, SM2013-9, SM2013-2 and WM-11 showing multiple disease resistance exhibited a good level of resistance even after combined inoculations of three pathogens. This study is the first to our knowledge identifying multiple disease resistance against root-knot nematode, Fusarium wilt and tomato leaf curl Palampur virus in muskmelon.

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3