Rice blast resistance gene profiling of Thai, Japanese and international rice varieties using gene-specific markers

Author:

Teerasan Wattanaporn,Moonsap Pattaraborn,Longya Apinya,Damchuay Katanyutita,Ito Shin-ichi,Tasanasuwan Piyama,Kate-Ngam Sureeporn,Jantasuriyarat ChatchawanORCID

Abstract

AbstractRice blast disease, caused by Magnaporthe oryzae, is one of the most damaging diseases of rice worldwide. Cultivation of rice varieties carrying resistance genes is the most economic and successful strategy to control the disease. In this study, 451 rice varieties from around the world including 363 Thai landrace rice varieties, 21 Thai improved rice varieties, 43 Japanese rice varieties and 24 worldwide rice varieties were screened by PCR technique using gene-specific markers for 10 rice blast resistance genes: Pi9, Piz-t, Pi50, Pigm(t), Pid2, Pid3, Pia, Pik, Pi54 and Pita. The results showed that 382 (99.48%) Thai rice varieties have at least one resistance gene and two rice varieties, ‘Hom’ and ‘Bak muay’, contained eight out of ten screened rice blast resistance genes. 320 rice varieties (83.33%) contained three or more rice blast resistance genes. The frequency of the rice blast resistance gene ranges from 87.76–9.64 per cent, of which the Pid3 gene has the highest frequency and the Pi54 gene has the lowest frequency. Two major resistance genes, found in Japanese rice varieties, are the Pik gene (76.74%) and the Pi9 gene (72.09%). While two major resistance genes, found in the international rice varieties are the Pi9 gene (66.67%) and the Pi54 gene (62.50%). The disease resistance gene profile of each rice variety obtained from this study will benefit the rice blast resistant breeding programme in the future.

Funder

the National Research Council of Thailand

Kasetsart University-Yamaguchi University Short Visit Program

Ubon Ratchathani University

graduate scholarship provided by the Center of Excellence on Agricultural Biotechnology, Science and Technology Postgraduate Education and Research Development Office

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Genetics,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3