Genetic dissection of advanced soybean (Glycine max L.) germplasm for spring season cultivation in Pakistan

Author:

Ghuman Hasham Feroz,Ahmed Zaheer,Sadia Bushra,Awan Faisal SaeedORCID

Abstract

AbstractImprovement in genetic gains of crops could be achieved by phenomics' characterization of agronomic, physiological and stress-related traits. Molecular and strategic breeding programmes require broad range of foreground and background phenotypic information for crop improvement. The current experiment was performed on 123 advanced soybean (Glycine max L.) genotypes including seven local lines belongs to four different maturity groups (000-lV) to estimate the endogenous potential of various yield-related traits. The experimental trial was repeated for two cropping seasons. Four traits out of six, yield per plant (YPP), number of seeds per plant, number of pods per plant and plant height (PH), showed maximum variation (CV%) that directly correlate with variability in the subjected population. PH, number of pods, 100-seed weight and YPP showed strong positive correlation in both years. Among the principal components, factors 1 and 2 showed maximum contribution in phenotypic variability ranges from 19 to 48.5% and 26 to 47.7% in the first and second years, respectively. Number of pods showed significant positive correlation with genotypes in both years. Dendrogram showed two distinct groups of soybean genotypes. Genetic variation and association among the accessions is indispensable for effective conservation and utilization of germplasm. Principal component analysis helps to identify the diverse genotypes that will be used as a parent for various breeding programmes. These phenotypic data will be used for detection of heat stress-related quantitative trait loci with genotypic data in genome-wide association studies experiments.

Publisher

Cambridge University Press (CUP)

Reference41 articles.

1. An integrated biplot analysis system for displaying, interpreting, and exploring genotype × environment interaction;Yan;Crop Science,2005

2. Estimation of genetic variability, heritability and genetic advance for yield and yield related traits in wheat under rainfed conditions;Yaqoob;Journal of Agricultural Research,2016

3. Biochemical markers assisted screening of Pakistani wheat (Triticum aestivum L.) cultivars for terminal heat stress tolerance;Shahid;Pakistan Journal of Agricultural Sciences,2017

4. Impacts of heat stress on wheat: a critical review;Iqbal;Advances in Crop Science and Technology,2017

5. Phenotypic diversity of modern Chinese and North American soybean cultivars;Cui;Crop Science,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3