Evaluating cover crop tolerance to corn residual herbicides using field-treated soil in greenhouse bioassay

Author:

Severo Silva TatianeORCID,Arneson Nicholas John,Silva Daniel Valadão,Werle Rodrigo

Abstract

AbstractMore growers across the U.S. Midwest are considering interseeding or overseeding cover crops into corn for soil health purposes. One challenge of this practice is the potential injury from soil residual herbicides applied preemergence (PRE) for weed control in corn to the interseeded and overseeded cover crop species. Field-treated soil was collected in 2021 and 2022 at Janesville, WI, and Lancaster, WI, to investigate the impact of PRE residual herbicides on establishment of interseeded and overseeded cover crops via greenhouse bioassay. Soil samples (0 to 5 cm depth) were collected from field experiments at 0, 10, 20, 30, 40, 50, 60, and 70 days after treatment (DAT). Treatments consisted of 14 single and multiple sites of action (SOAs) PRE herbicides plus a nontreated check (NTC). Four bioindicator cover crop species were used in the greenhouse bioassay: annual ryegrass, cereal rye, radish, and red clover. Cover crop biomass was collected 28 d after bioassay seeding. Cover crop species responded differently across herbicide treatments. Annual ryegrass and cereal rye were sensitive to treatments containing herbicide Group 15, whereas Groups 2, 4, 5, 14, and 27 had minimal impact on their establishment when field soil was collected at 30 DAT (interseeding scenario) and 70 DAT (overseeding scenario) compared to the NTC. Radish and red clover were sensitive to herbicide Groups 2, 4, and 27, whereas Groups 5, 14, and 15 had minimal impact on their establishment. Annual ryegrass, radish, and red clover were more sensitive to PRE herbicides containing two and three SOAs than to herbicides with a single SOA. On the basis of these greenhouse bioassay results, cover crop species should be carefully selected depending on the soil residual herbicide when interseeded and overseeded into corn. Field studies will be conducted to validate these results and support recommendations to growers interested in this system.

Publisher

Cambridge University Press (CUP)

Subject

Plant Science,Agronomy and Crop Science

Reference49 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3