Focus on biosensors: Looking through the lens of quantitative biology

Author:

Rowe James H.ORCID,Jones Alexander M.ORCID

Abstract

Abstract In recent years, plant biologists interested in quantifying molecules and molecular events in vivo have started to complement reporter systems with genetically encoded fluorescent biosensors (GEFBs) that directly sense an analyte. Such biosensors can allow measurements at the level of individual cells and over time. This information is proving valuable to mathematical modellers interested in representing biological phenomena in silico, because improved measurements can guide improved model construction and model parametrisation. Advances in synthetic biology have accelerated the pace of biosensor development, and the simultaneous expression of spectrally compatible biosensors now allows quantification of multiple nodes in signalling networks. For biosensors that directly respond to stimuli, targeting to specific cellular compartments allows the observation of differential accumulation of analytes in distinct organelles, bringing insights to reactive oxygen species/calcium signalling and photosynthesis research. In conjunction with improved image analysis methods, advances in biosensor imaging can help close the loop between experimentation and mathematical modelling.

Funder

Biotechnology and Biological Sciences Research Council

Publisher

Cambridge University Press (CUP)

Subject

General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3