Electron density distribution and crystal structure of 21R-AlON, Al7O3N5

Author:

Asaka Toru,Kudo Tatsunari,Banno Hiroki,Funahashi Shiro,Hirosaki Naoto,Fukuda Koichiro

Abstract

The crystal structure of Al7O3N5 was characterized by laboratory X-ray powder diffraction (Cu1). The title compound is trigonal with a space group R3m (centrosymmetric). The hexagonal unit-cell dimensions (Z = 3) are a = 0.305 06(1) nm, c = 5.7216(1) nm, and V = 0.461 11(2) nm3. The initial structural model was derived by the charge-flipping method and refined by the Rietveld method. The final structural model showed the positional disordering of two of the four Al sites. The maximum-entropy method-based pattern fitting method was used to confirm the validity of the split-atom model, in which conventional structure bias caused by assuming intensity partitioning was minimized. The disordered crystal structure was successfully described by overlapping five types of domains with ordered atom arrangements. The distribution of atomic positions in one of the five types of domains can be achieved in the space group R3m. The atom arrangements in the four other domains are non-centrosymmetric with the space group R3m. Two of the four types of domains are related by a pseudo-symmetrical inversion, and the two remaining domains also have each other in the inversion pseudo-symmetry.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics,Instrumentation,General Materials Science,Radiation

Reference30 articles.

1. Thermodynamic reassessment of the AlN-Al2O3 system

2. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides

3. Unit-cell refinement from powder diffraction scans

4. Ab initiostructure solution by charge flipping

5. Formation at high temperature of nonstoichiometric spinel and of derived phases in several oxide systems based on alumina and in the system alumina-aluminum nitride;Lejus;Rev. Int. Hautes Temp. Refract,1964

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3