Abstract
Crystal structure of BaxSr3–xMgSi2O8 has been determined by Raman spectroscopy and X-ray diffraction. The solid solution series have glaserite-type layered structures made of corner-sharing SiO4 tetrahedra and MgO6 octahedra. Ba2+ and Sr2+ ions are sandwiched in between the layers. Raman spectroscopy has found that structural symmetry changes at x = 0.5 and 2.5. Structural refinement by the Rietveld method has clarified that the symmetry changes occur among C2 (Z = 4), P${\bar 3}$m1 (Z = 1), and P${\bar 3}$ (Z = 3). They originate in SiO4 tilting caused by size mismatch between alkali–earth cations and their site spaces. For x ≤ 0.5, SiO4 tilting occur every other interlayer space, whereas for x ≥ 2.5, all the SiO4 tilt.
Publisher
Cambridge University Press (CUP)
Subject
Condensed Matter Physics,Instrumentation,General Materials Science,Radiation
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献