Analysis of Preferred Orientations in Linear Friction Welded (LFW) Aluminium Alloy Specimens using “One-shot” Multi-element Energy Dispersive Synchrotron X-ray Diffraction

Author:

Xie M.Y.,Jun T.S.,Korsunsky A.M.,Drakopoulos M.

Abstract

Linear Friction Welding (LFW) has tremendous potential for joining components from similar and dissimilar materials, avoiding material melting and introducing minimal distortion and only moderate levels of residual stress. However, the significant amount of attendant shear introduces preferred crystal orientations that have not yet been well studied. The “one-shot” approach to the interpretation of multi-element energy-dispersive X-ray powder diffraction data allows preferred orientation analysis without any sample preparation (cutting or polishing) or sample rotation. The key step for texture analysis by X-ray powder diffraction is the derivation of the orientation distribution function (ODF) from experimental data. Matlab toolbox “MTEX” provides a powerful function “calcODF” based on the harmonics method for this purpose. In the study reported in this paper, energy dispersive X-ray diffraction patterns were collected using the “horseshoe” multi-element energy-dispersive Ge detector installed on the JEEP beamline at Diamond Light Source. A single exposure was used for each gauge volume of interest, and a line was scanned across an Aluminum 2024 alloy LFW sample. The patterns were converted into raw pole figures through single peak fitting and equal area projection. The ODF calculation was performed based on these pole figures using Matlab toolbox “MTEX”. As a result, full pole figures obtained after ODF calculation were obtained. These are presented and discussed. The results show that the thermal-mechanical processes that occur during the LFW process lead to significant modification of the orientation distribution, but cause only moderate changes in the texture index.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics,Instrumentation,General Materials Science,Radiation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3