Abstract
SUMMARYThe probability distribution of the heterogenic (non-identical by descent) fraction of the genome in a finite monoecious random mating population has been derived. It was assumed that in any generation the length of both heterogenic and homogenic segments are exponentially distributed. An explicit expression is given for the expected number of ‘external junctions’ (sites that mark the end of a heterogenic segment) per unit map length in any generation. The latter necessitates the introduction of two higher-order identity relations between three genes, and their recurrence relations. Theoretical results were compared with the outcome of a series of simulation runs (showing a very good fit), as well as with the results predicted by Fisher's ‘theory of junctions’. In contrast to Fisher's approach, which only applies when the average heterogeneity is relatively small, the present model applies to any generation.
Subject
Genetics,General Medicine
Cited by
128 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献