Structure, frequency and distribution of P elements in relation to P—M hybrid dysgenic male recombination inDrosophila melanogaster

Author:

Exley K. A.,Eggleston P.

Abstract

SummaryThe frequency and distribution of P elements were investigated in the third chromosomes of two wild-type strains ofDrosophila melanogasterusingin situhybridization of biotinylated probes to the polytene chromosomes. The relationship between these data and the extent of hybrid dysgenesis was determined through assays of egg production, egg hatchability (F2embryo lethality),snwdestabilization and male recombination along the third chromosome. The results suggest that P-element distribution, frequency and structure are all contributory factors in the regulation of hybrid dysgenesis. Texas 6 was shown consistently to be a stronger P strain than Texas 1, eliciting greater reductions in fertility, more extensivesnwdestabilization and higher frequencies of male recombination. Clustering of male recombination events, arising from pre-meiotic crossing over, was evident among the dysgenic progeny of each strain. Male recombination andsnwdestabilization were independently distributed among the dysgenic males studied, suggesting that these traits represent separate P-mediated functions. The third chromosome male recombination maps produced by the two strains differed significantly from each other and from the published female meiotic and polytene chromosome maps. Male recombination breakpoints were associated with the original distribution of P sequences in the two strains and the results suggest that this relationship may be closer for potentially complete P factors than for P sequences in general. An analysis of sub-lines derived from individual recombinant males revealed that chromosomal breakpoints could also be associated with novel insertions following P-element transposition.

Publisher

Hindawi Limited

Subject

Genetics,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3