Abstract
SummaryCurrent models based on the analysis of linear metabolic pathways at steady-state predict that large increases over wild type in the activity of one enzyme will not alter an organism's fitness. This prediction is tested at steps in a highly branched pathway under two conditions known to alter steady-state: heat shock and nitrogen starvation.Saccharomyces cerevisiaetransformants overproducing 1 of 4 enzymes in glycolysis (hexokinase B, phosphoglucose isomerase, phosphofructokinase, or pyruvate kinase) were subjected to heat shock in both exponential and stationary phases of growth. In neither phase does enzyme overexpression alter heat shock sensitivity. When starved for nitrogen in acetate medium, transformants overproducing hexokinase, phosphoglucose isomerase, and phosphofructokinase sporulate at the same rate and with the same frequency as cells harbouring only the plasmid vector. Current models therefore correctly predict the relationship between activity and components of fitness for 3 of 4 enzymes. By contrast, cells overexpressing pyruvate kinase sporulate poorly. This defect is not observed among cells transformed with a plasmid containing a Tn5 disrupted copy of thePYKgene. These findings are consistent with reports that implicate thePYKlocus in yeast cell cycle control and suggest that it may be challenging to model relations between fitness and activity for multifunctional proteins.
Subject
Genetics,General Medicine
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献