Transposable element-induced fitness mutations inDrosophila melanogaster

Author:

Mackay Trudy F. C.

Abstract

SummaryP element mutagenesis was used to contaminate M strain second chromosomes with P elements. The contaminated lines were compared to uncontaminated control lines for homozygous and heterozygous fitness and its components. Mean homozygous fitness, viability and fertility of chromosome lines contaminated with P elements is decreased relative to the uncontaminated control lines by, respectively, 55, 28 and 40%. Variance among contaminated homozygous lines of total fitness increases by a factor of 1·5, variance of viability by a factor of 5·9, and variance of fertility by a factor of 1·9, compared to variance of these traits among the population of uncontaminated homozygous chromosomes. Estimates of P-element-induced mutational variance among second chromosome lines for homozygous fitness, viability and fertility are, respectively, 2 × 10−2, 5 × 10−2and 2 × 10−2. This magnitude of mutational effect is equivalent, in terms of incidence of induced recessive lethal chromosomes and D:L ratio, to a dose of approximately 1·0–2·5 × 10−3m EMS. The distributions of fitness traits among M-derived second chromosome homozygous lines contaminated with P elements are remarkably similar in many regards to distributions of fitness and viability of chromosomal homozygotes derived from naturalDrosophilapopulations. It is possible that a proportion of the fitness variation previously observed (reviewed by Simmons & Crow, 1977) following homozygosis of wild chromosomes was not present in the natural populations, but was generated by P-element transposition during the chromosome extraction procedure. P-element-induced fitness mutations appear to be completely recessive. Implications for models of evolution of transposable elements are discussed.

Publisher

Hindawi Limited

Subject

Genetics,General Medicine

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3